How to Build 10G Network Within Budget

Modern business have become increasingly digital for cloud and data center application, which means everything from sales and marketing to service and support, rely heavily on a fast and reliable network. In 2017, Gigabit Ethernet data rate is no longer adequate to support your business in the ever-developing digital world. Therefore, more and more people nowadays prefers to migrate to 10 Gigabit network. This blog will introduce some basic components of 10G network and how to layout 10GbE within your budget.

How Much Does It Cost?

Three expensive but dispensable elements of 10G network are 10G core switches, access switches with 10G uplinks, and 10G network interface cards for severs and storage devices.

10G network layout

A 10G core switch might cost you $4000 10 years ago, but today, it heavily drops to under $150 per port. Take Cisco 550X and 350X series switches as the example, they offer a full series of 12, 16, 24, 48 10G ports for small and midsize enterprises nearly at $1,500. Obviously, the price can be pretty lower if you search around. For example, Ubiquiti Unifi and Edgeswitch series switches nearly at $200 are suitable for small businesses. FS S3800-48T4S with 48x 100/1000Base-T and 4x 10GE SFP+ is at $480.

For 10G access switches with 10G uplinks, FS S3800-24F4S, S3800-24T4S, S2800-24T4F provides 24 ports with 4 10G uplinks, starting from around $220.

A 10G network interface card (NIC) on severs or storage devices cost usually lower depending on the brand. The hot-selling Mellanox ConnectX series NICs are quite cheap on ebay and Amazon (for under $19).

10G Fiber Optic cabling Elements—10Gbase-T, DAC & SFP+ fiber optics?

When migrating from 1G to 10G, it is simple. Especially with 10GBase-T supported on your 10G switches, you use the same familiar RJ45 network cable to connect the 10G switch with your servers, storage and other switches, and they go up to the same 100 meters as in the Gigabit network. Just make sure you pick up a Cat6a RJ45 network cable instead of the cat5e or cat6a cables. 1m cat6a cables at FS.COM is $3.4. 10GBase-T technology is becoming more popular in network switches and servers because of its lower cost and ease of use. Besides the cat6a/cat7 Ethernet cables, you can also select SFP+ 10GBASE-T modules with 2.5W power consumption and a maximum distance of 30m. SFP+ 10GBASE-T offered at FS.COM is nearly $380.


FS S3800-24F4S (seen in the above image), S3800-24T4S and S2800-24T4F also support 10G SFP+. You are recommended to use SFP+ ports if you have existing devices that come with 10G SFP+ port or you need a 10G connection to other switches that are more than 100 meters away.

For servers or storage devices with 10G SFP+ port, the most cost-efficient way to connect is to use SFP 10G DAC (direct attach cable). These are basically copper cables with SFP+ connector on both sides, and they come in limited length of 1m, 3m and 5m. 0.5m copper SFP+ cables at FS.COM is $9.5.

switchcable-and-ethernet-interface SFP+ DAC cables

For switches that are more than 100 meters away, you will need a pair of SFP+ modules and the matching fiber cable between them. Depending on the length required, you can use multimode SFP+ and fiber to reach 400 meters and single-mode SFP+ and single-mode fiber optic cables to reach 10 km. For the reliable 10G devices like SFP+ transceivers and fiber optic cables, you can visit FS.COM.

How to Ensure a Smooth 10G Upgrading

You don’t need to rush your whole network to 10GbE in one step. Just start from the core switches that you use to connect all your access switches together and connect your servers and storage devices. Think about how many ports you need and if redundancy is a concern for you. Having two core switches stacked together to provide redundancy and also extra performance is a good design for a solid network foundation.

After upgrading your core switches to 10G, it is time to migrate your key access switches and servers to 10G. You will see immediate performance gain in the most critical parts of your network. The rest of the network can stay as they are for the moment, because 10GBase-T ports are backward compatible with Gigabit links, and 10G SFP+ cage can also work with 1G SFP modules. You can upgrade the rest of your network to 10G whenever you’re ready or in multiple phases if you wish.


I bet you must have a good understanding of what’s between the 10 Gigabit high-performance network. The technology is not complicated, especially with FS 10G switches, Cat6a cables, SFP+ transceivers and SFP+ DAC cables. We will help you build a user-friendly and cost-efficient 10G networks. For more information on FS 10G series switches, please contact us directly.

3 kommentarer


10G SFP+ optical transceiver is considered as the mainstream form factor of the 2017 market due to its matured technology and lower price, even although 40G/100G optical modules are on the very top trend for enterprise and data center for the interconnection. 10G SFP+ modules come in several standards: SFP-10G-SR, SFP-10G-LR, 10GBASE-ER SFP+, and 10GBASE-LRM SFP+. This article will offer details about the difference between SFP-10G-SR and SFP-10G-LR.


Cisco SFP-10G-SR

SFP-10G-SR is compliant with 10GBASE-SR standard. The Cisco 10GBASE-SR module supports a link length of 26m on standard Fiber Distributed Data Interface (FDDI)-grade multimode fiber, up to 300m link lengths over OM3 and 400m link lengths over OM4 cables.

Cisco SFP-10G-SR transceiver is hot-swappable input/output device which allows a 10 Gigabit Ethernet port to link with a fiber optic network. Because it is hot-swappable and MSA compliant, the Cisco SFP-10G-SR transceiver can be plugged directly into any Cisco SFP+ based transceiver port, without the need to power down the host network system. This capability makes moves, add-ons and exchanges quick and painless. The data sheet of SFP-10G-SR is as follows:


The Cisco SFP-10G-SR series consists of two other modules: the Cisco SFP-10G-SR-S Module and the Cisco SFP-10G-SR-X Module.

The Cisco SFP-10G-SR-S module belongs to the Cisco S-class optics that possess the same performance with Cisco SFP-10G-SR module. For the detailed information about the difference between Cisco S-class and non S-class optics, you can review the previous article.

Cisco SFP-10G-LR

The Cisco 10GBASE-LR module supports a link length of 10 km on standard single-mode fiber. Compliant with 10GBase-LR standard, SFP-10G-LR can support up to 10km over single-mode fiber and uses 1310nm lasers. There is no minimum distance for LR, either, therefore it is suitable for short connections over single mode fiber, too. The following image shows a Cisco Compatible SFP-10G-LR SFP+.

Cisco SFP-10G-LR


10GBASE-LRM is the type of transceiver that customers may easily feel confused with 10GBASE-LR SFP+ optics. However, in short, 10GBASE-LRM SFP+ still uses the 1310nm lasers, but it can only reach up to 220 m over standard multimode fibers (OM3/OM4). The 10GBASE-LRM can be packaged in XFP and SFP+ form factors.

Besides the Cisco SFP-10G-LRM module, there are a new type of the 10G SFP+ module for multimode fibers—SFP-10G-LRM2. It is a type of SFP+ transceivers compatible with the 10GBASE-LRM standard. SFP-10G-LRM2 can reach up to 2km over standard multimode fiber.

Do You Need Cisco Original Brand or Compatible SFP+ Modules?

If you spend a large sum of money on the Cisco original brand switch, next you may think of buying the compatible optics. However, there comes the problem, do I need the Cisco original brand modules?

To tell the truth, not every SFP+ modules can work well on the Cisco switch SFP+ ports. You must make sure of the compatibility before plugging the SFP+ transceivers on it. Furthermore, SFP+ modules are the essential components of fiber optic network, usually, network installers need a bunch of them for your network deployment. Thus, select cost-effective 3rd party modules are necessary. You can also purchase more for back up.

FS.COM, as a reliable and qualified fiber optics supplier, supplies a full range of optical transceivers with a large quantity of products available in stock. Our compatible Cisco SFP-10G-SR and SFP-10G-LR modules are provided at really low price. Cisco SFP-10G-SR is $16, and SFP-10G-LR is $34.


SFP-10G-SR is mainly used for short-reach 10G application, while SFP-10G-LR, with a link length of 10 km is ideal for metro infrastructure. Customers can choose either reliable SFP-10G-SR or SFP-10G-LR, according to their own needs.

0 kommentarer

10G Data Center Cabling Solutions

The rapid development in data center throughput has led to the increasing usage and demand for higher-performance servers, storage and interconnects. And the old 1G Ethernet cannot handle the heavy-loaded solutions in data center any more. As a result, datacenter designers are looking to the expansion of higher speed Ethernet solutions, specifically 10 G and 40G Ethernet. As for 10GbE, there are two broad categories—SFP+ optical options and 10GBASE-T available on the market, which pose difficulty in selecting the appropriate 10-gigabit physical media. This article will make a brief introduction to these two 10G solutions to help you choose the suitable one.

What Is 10G SFP+?

10G Small-form-factor pluggable plus (SFP+) is the industry standard for data rates up to 10 Gbps, which is also MSA compliant. SFP+ module is especially standardized for 10 Gbps application, and is identical in dimensions to the SFP. To achieve the SFP+ form factor reduction, only the optical-to-electrical and electrical-to-optical conversion functionalities occur inside the optical module. The key advantage of SFP+ over the existing 10 G optical interconnects is the higher port densities enabled by its dimensions, and lower power consumption. Figure 1 shows a SFP+ modules connected with a LC to LC patch cord.


SFP+ transceivers are available in different 10G Ethernet standards—10GBASE-SR, 10GBASE-LR, 10GBASE-LRM, 10GBASE-ER, 10GBASE-ZR, 10GBASE-LX4 and 10GBASE-PR. Each standard has a unique specification that can be suitable for different applications. SFP+ optics are selected more often when designers need faster and more reliable solutions to handle 10 Gigabit Ethernet optical lines. With lower power usage and low latency, SFP+ ports are most commonly used for enterprise switches and also for plug-in cards for servers.

How Does 10G Copper Solutions Compare?

10G Ethernet can also run over twin-axial cabling, twisted pair cabling, and backplanes. SFP+ direct attach cable, 10GbASE-CX4 and 10GBASE-T are the common copper solutions for 10G short-reach interconnect. 10GBase-CX4 achieves the aggregate rate of 10 Gbps by transmitting over four independent cables at 3.125 Gbps. The disadvantage of this solution is the bulkiness of the cables that have eight twin-ax cables within them for a duplex link. And the bulkiness of the cables makes cable management more difficult. This becomes a significant limitation as the port densities and inter-port connection densities increase. Additionally, the number of conductors make these cables expensive compared to SFP+ cables.

10GBase-T enables 10 Gbps transmissions over Cat 6 and higher quality cables using complex signal processing and channel coding. The potential advantage of this technology is its extended reach. The extended reach and ability to enable structured cabling are not required for the short reach interconnects between servers and switches collocated in a rack. The disadvantages are its high power consumption and latency. The high latency in particular is a key limitation in latency sensitive data center and storage applications.

SFP+ Direct Attach DAC is another lower cost alternative to fiber with a limited link length of 7 meters. Additionally, it has significant power, cost, and performance advantages over the above media as explained below.

Why Use 10G DAC Cables in Data Center?

As 10 Gbps interconnects become ubiquitous in servers, providers are looking for a low cost, low power, and space efficient interconnect solution for the short reach (5-7m) links that dominate the data center environment. A length of seven meters covers all connections between server cards and switches, typically mounted on a single data center rack, and a vast majority of inter-rack connections. The SFP+ Direct Attach Copper is the 10G interconnect technology that matches these requirements, playing a vital role in enabling the next generation power and cost efficient data centers.

SFP+ Direct Attach Copper Solution

To further reduce cost and power in interconnect distances of 7 meters, which is sufficient to link server cards and switches, the SFP+ Direct Attach Copper replaces the optical modules and fiber with a passive copper cable with connectors identical to an SFP+ optical module. Figure 2 shows a SFP-H10GB-CU3M plugging in a Cisco switch. The reduction in cost and power are significant since the price of two optical modules required to support a full duplex link is approximately 10 times the cost of a fully connectorized SFP+ Direct Attach cable. In addition, the optical SFP+ modules consume around 1W each, adding 2W per port to the overall system power budget and cooling requirements.

DAC cable in a Cisco switch

Data is transmitted as 10 G serial NRZ (Non Return to Zero) symbols with transmit pre-emphasis and receive equalization compensating for Inter Symbol Interference caused by the board trace and the copper cable. This choice of serial NRZ transmission over a passive medium makes SFP+ copper both a low power and low latency solution compared to its alternatives.


As more emphasis is placed on energy efficient data centers and higher bandwidth applications, the need for a small form factor, low power, low latency and low cost interconnect makes SFP+ Direct Attach the optimal solution for short-reach 10G interconnects. While SFP+ fiber options provides a great path for higher performance long haul applications. FS.COM is a top manufacturer for DAC Twinax cables (SFP+ Cables, XFP Cables, CX4 Cables, Infiniband Cables, etc) and best suppliers for QSFP+ products including 10G & 40G QSFP+ copper and AOC cables. Optics transceivers like QSFP+, SFP, SFP+, XFP, X2, XENPAK, SDH, Bidi are also offered. If you have any interest in our products, you can contact us directly.

59 kommentarer

Why Choose 10 Gigabit Ethernet?

Since Ethernet technology came into people’s use in 1970s, Gigabit Ethernet (GbE) has long deminated the local area network (LAN) applications. But when to connect servers to storage area networks (SANs) and network attached storage (NAS) or for server-to-server connections, GbE seems to be not sufficient enough. In such a case, Ethernet has developed the later technology standard as newer, higher performing iteration—10GbE.

The Institute of Electrical and Electronics Engineers (IEEE) 802.3 working group has published several standards regarding 10GbE, including 802.3ae-2002 (fiber -SR, -LR, -ER), 802.3ak-2004 (CX4 copper twin-ax InfiniBand type cable), etc. Among these standard interfaces, 10GBASE-SR is the most-widely used type, like Cisco SFP-10G-SR and Cisco SFP-10G-SR-S. With 10Gigabit connectivity becoming widely available, 10GbE technology has emerged as the connection choice for many companies to grow their networks and support new applications and traffic types. Behind the 10GbE, there are three main advantages which explain why users choose it today.

10GbE Backbone

Data Center Network Simplification

While Fibre Channel and InfiniBand are specialized technologies that can connect servers and storage, they can’t extend beyond the data center. However, a single 10GbE network and a single switch can support the LAN, server-to-server communications, and can connect to the wide-area network. Ethernet and IP network technology are familiar to network designers, so replacing multiple networks with a single 10GbE network avoids complex staff training. And by consolidating multiple gigabit ports into a single 10gigabit connection, 10GbE simplifies the network infrastructure while providing greater bandwidth.

Traffic Prioritization and Control

A major advantage of 10GbE is that separate networks for SANs, server-to-server communication and the LAN can be replaced with a single 10GbE network. While 10Gb links may have sufficient bandwidth to carry all three types of data, bursts of traffic can overwhelm a switch or endpoint.

SAN performance is extremely sensitive to delay. Slowing down access to storage has an impact on server and application performance. Server-to-server traffic also suffers from delays, while LAN traffic is less sensitive. There must be a mechanism to allocate priority to critical traffic while lower-priority data waits until the link is available.

Existing Ethernet protocols do not provide the controls needed. A receiving node can send an 802.3x PAUSE command to stop the flow of packets, but PAUSE stops all packets. 802.1p was developed in the 1990s to provide a method to classify packets into one of eight priority levels. However, it did not include a mechanism to pause individual levels. The IEEE is now developing 802.1Qbb Priority-based Flow Control (PFC) to provide a way to stop the flow of low-priority packets while permitting high-priority data to flow.

A bandwidth allocation mechanism is also required. 802.1Qaz Enhanced Transmission Selection (ETS) provides a way to group one or more 802.1p priorities into a priority group. All of the priority levels within a group should require the same level of service. Each priority group is then assigned a percentage allocation of the link. One special priority group is never limited and can override all other allocations and consume the entire bandwidth of the link. During periods when high-priority groups are not using their allocated bandwidth, lower-priority groups are allowed to use the available bandwidth.

Congestion control

802.1Qbb and 802.1Qaz by themselves don’t solve the packet loss problem. They can pause low-priority traffic on a link, but they don’t prevent congestion when a switch or an end node is being overwhelmed by high-priority packets from two or more links. There must be a way for receiving nodes to notify sending nodes to slow their rate of transmission.

IEEE 802.1Qau provides such a mechanism. When a receiving node detects that it is nearing the point where it will begin discarding incoming packets, it sends a message to all nodes currently sending to it. Sending nodes slow their transmission rate. Then, when congestion is cleared, the node sends a message informing senders to resume their full rate.

10GbE in Data Centers

For many institutions, especially those that utilize automated trading, uptime and response time is critical. Longer delays than a second can be exceedingly costly. With servers now being able to transmit bandwidth and network downtime, today’s data centers of some companies need extended bandwidth. 10GbE is an ideal technology to move large amounts of data quickly. The bandwidth it provides in conjunction with server consolidation is highly advantageous for Web caching, real-time application response, parallel processing and storage.


10GbE comes as the ideal connection choice for some companies, delivering greater bandwidth for sending data over Ethernet architectures with reduced cost and complexity. Fiberstore offers an ocean of 10GbE solutions, such as high-quality SFP+ modules (eg. Cisco SFP-10G-SR and SFP-10G-SR-S mentioned above). For more information about 10GbE equipment, you can visit Fiberstore or directly connect me at Linkedin @Fern Xu (Fiberstore).

29 kommentarer