Understanding Two Technologies: Switch Stack vs Switch Cluster

With an increasing scale of network and the development of application technology, we intend to seek for a way to make full use of multiple switches with effective management. In general, there are mainly three technologies that we will use when we interconnect or combine several Ethernet switches together. The three technologies are switch cascade, switch stack and switch cluster. Sometimes it is difficult for people to differentiate between these three technologies in the first instance. In this article we will put emphasis on two technologies: switch stack vs switch cluster and put forward their connections and distinctions so as to provide you a comprehensive understanding.

switch cascade vs switch stack vs switch cluster

Figure1: switch cascade vs switch stack vs switch cluster

Overview of Switch Stack vs Switch Cluster

The comparison between switch stack vs switch cluster should be based on the sufficient understanding of their concepts.

  • What Is Switch Stack

Switch stack is a kind of technology that unites multiple switches into a single logical unit by using fast Ethernet ports or Gigabit Ethernet ports. The stack behaves as a single switching unit that is managed by a master switch elected from one of the member switches. The port density or the switch capacity of a stack is the sum of the combined switches. For example, when you cascade two 24 port switches , you will get one large 48 port switch on the basis of 24 port switch. And all the switches in this stack share a single IP address for remote management.

For switch cascade, actually it is similar to switch stack. By cascading, more than one switch can be connected in a certain way. While they are configured and managed independently which are different from switch stack with an unified management. Switches that are cascaded together should all support Spanning Tree Protocol (STP) with the purpose of allowing redundancy and preventing loop.

  • What Is Switch Cluster

Switch cluster is a set of connected and cluster-capable switches that are managed as a single entity without interconnecting stack cables. The switches in the cluster use the switch clustering technology so that you can configure and troubleshoot a group of different switch platforms through a single IP address. In those switches, one switch plays the role of cluster command switch, and the other switches are cluster member switches that are managed by the command switch.

Connections and Distinctions Between Switch Stack vs Switch Cluster

  • Connections Between Switch Stack vs Switch Cluster

From above introduction, you may have found that stack and cluster are very similar. Firstly, stack or cluster both use only one IP address, and member switches are managed as a whole by master switch. Therefore, stack and cluster are the feasible technologies to simplify the management of multiple switches. Secondly, neither stack nor cluster can be randomly stacked or clustered. Only stackable switches are able to be stacked together. Similarly, only specific cluster-capable switches from the same manufacturer can be clustered since different manufacturers may use different software for clustering.

  • Distinctions Between Switch Stack vs Switch Cluster

Configuration Complexity

It is easier to be configured for stack since it can automatically recognize new stack member, while in a cluster, you have to manually add a device to be the switch cluster.

Management

The management of stack members depends on a single configuration file. While cluster members have separate and individual configuration files. It means that the management by a stack master is complete on every stack switch, but the cluster command network switch is the point of some management for all cluster members.

Location

The distances between clustered switches can be more flexible. They can be in the same location or located as Layer 2 switch or Layer 3 switch. But stacked switches are in the same layer and normally located in the same rack. Only virtual stackable switches can be placed in different locations.

Conclusion

In this article, we have respectively discussed the concepts of switch stack vs switch cluster. Besides, their connections and distinctions should be also paid real attention to. Generally, stack is based on hardware implementation while cluster is based on software implementation. It would be better to choose or apply technique depending on the network requirement and distance. If you are looking for a stackable switch or clustered switch, FS can provide such 10GbE switch with stackable and clustered features to meet your needs.

0 kommentarer

10GbE SFP Switch vs 10GBASE-T Switch: How to Choose?

As we know, 10 Gigabit Ethernet network is the trend of the present data centers. For 10GbE switch solutions: 10GbE SFP switch and 10GBASE-T switch are the two choices. How to choose the most appropriate and the best 10G connectivity solution? And could it be able to support data center deployments and acclimate trend concerning current situation and the future? In order to clear things up, this article will respectively discuss 10GbE SFP switch and 10GBASE-T switch network solutions.

10GbE SFP Switch Solution

With the performance of superior throughput and latency, 10GbE SFP Ethernet switch is a cost-effective solution compared to Gigabit network switch. By reason of the attractive improvement in bandwidth, port density and reduced power consumption, the 10GbE SFP switch has become the choice for latency sensitive application. During different switches of various port configurations, a 48 port 10GbE SFP switch is the most future-proofing one with abundant applications in business oriented network that can lower the overall infrastructure costs in the aspect of cables and switch ports.

FS S5800-48F4S SFP switch with 48-port 1GbE SFP and 4-port 10GbE SFP+ in a compact 1RU form factor is particularly aimed at solving the problems of access to core 10G network connectivity for businesses and data centers.

FS S5800-48F4S 10Gb SFP Switch

10GBASE-T Switch Solution

10 Gigabit Ethernet switch over copper cable addresses bottleneck problem and creates great ROI and performance since it is fully backwards compatible with 100/1000BASE-T and works with existing structured cabling systems, providing IT technicians the most flexibility in server placement. Take FS S5850-48T4Q switch as an example, it comes with 48 10GBASE-T Ethernet ports, 4 40GE QSFP+ Ethernet ports and management & Console ports (RJ45). All the 10GBASE-T copper ports can auto-negotiate and communicate effectively with legacy 1Gbit/s and 100Mbit/s server connections that are cabled with Cat6 and Cat6a cabling.

FS S5850-48T4Q 10GBASE-T switch

10GbE SFP Switch vs 10GBASE-T Switch: Which Is the Best 10G Network Solution?

As the basis of upgrading network, 10G network has been omnipresent in data center, enterprise network and even home networking. As for two different 10G network solutions: 10GbE SFP switch vs 10GBASE-T switch, which one would be better?

  • Price

The cost reduction of 10GBASE-T technology in the past years has made the usage of SFP+ become an additional expense of adapters for the servers. By contrast, the cost of 10GBASE-T ToR switch is 20% to 40% less than that of SFP+ ToR switch. So 10GBASE-T is much cheaper and provides the most economical solution than SFP+ solution.

  • Backwards Compatibility

10GBASE-T owns the advantage of being an interoperable and standards-based technology that uses the familiar RJ45 connector. It provides backwards compatibility with legacy networks. While SFP switch is limited with little or no backwards compatibility.

  • Power Consumption and Latency

The power consumption of 10GBASE-T switch is 1.5 to 4 Watts per port depending on the distance, while SFP switch uses less power consumption which is typically less than 1 Watts per port. What is more, SFP switch offers better latency with about 0.3 microseconds per link. 10GBASE-T latency is about 2.6 microseconds per link due to more complex encoding schemes within the equipment. With lower power consumption and latency, 10GbE SFP switch is fitted well for large high-speed super-computing applications where latency is a critical factor and high port counts can benefit significant power savings.

Conclusion

When you have to choose between 10GbE SFP switch vs 10GBASE-T switch for the best 10G network solution, the decision should be based on your real need. In general, for equipment that power consumption and lower latency are crucial, a 10Gb SFP switch might be more suitable. However, if cost, flexibility and compatibility are more vital, you may consider a 10GBASE-T switch. Both of them should find an appropriate place in the future of network design and practice.

0 kommentarer

Understanding Combo SFP Port on Ethernet Switch

For new comers who are not familiar with the structure and functionality of Ethernet switch, they are apt to get confused with different ports built in for different connection. Except for those common ports on SFP switch, such as SFP port , there is another port called “combo SFP port”. Do you know what is it and what is the difference between SFP port and combo SFP port? In this article we aim to give you comprehensive understanding of combo SFP port on Ethernet switch.

What Is Combo SFP Port on Ethernet Switch?

In a nutshell, a combo SFP port is regarded as a single interface with dual front ends, i.e. an RJ-45 connector and an SFP (Small Form Pluggable) module (also called Mini-GBIC) connector. In other words, this is a compound port which can share the same switch fabric, port number and allow the users to configure their SFP switch according to different applications. But the two different physical ports can not be used simultaneously. It means that you can either plug a cable into copper 10/100/1000 interface, or plug the cable into SFP slot.

A combo SFP port is a way to provide different types of connectivity and give users the power and flexibility to configure SFP switch for unique application requirements. Below is the demonstration of 4 combo SFP ports on FS SFP switch.

combo SFP port on a SFP switch

What Is the Difference Between SFP Port and Combo Port?

Combo interface, also known as optoelectronic multiplexing interface which is a switch device panel with two Ethernet ports: an optical port and an electrical port. Combo electrical port and its corresponding optical port are logically multiplexed, and the user can choose which one to use according to the actual network demand. But when one of the ports is activated, the other port is automatically blocked since they can not be used at the same time.

While SFP port (mini-GBIC port), a small form-factor hot pluggable interface, is designed for high speed and density SFP connection. SFP ports on SFP switch support both copper and optical links. When SFP ports on SFP switch are inserted into SFP modules with electrical ports, Ethernet copper cables are needed for data transmission. If SFP ports are plugged by SFP optical modules with optical ports, then fiber patch cables are required.

Introduction to FS.COM 24 Port Switch With 4 Combo SFP Ports

There are many SFP switches with combo SFP ports, but today we are going to take FS S3800-24F4S: 24 port switch with 4 combo SFP ports as an example to illustrate the usage of combo SFP ports on a SFP switch.

S3800-24F4S 24-port Gigabit switch comes with 20x 100/1000Base SFP, 4x 1GE combo and 4x 10GE SFP+ slots which offers up to 128Gbps switching capacity to synchronously process the traffic on all ports without any packet loss. The 4 combo SFP ports on switch facilitate the application of different connectivity, making it more flexible to configure the switch. In addition, this diversiform port combination form provides a high bandwidth aggregation connectivity for multiple switches to enhance network capacity. All in all, this 24-port Gigabit managed switch is fit for enterprise network operators who pursue high performance and low power processor to provide full speed forwarding and line-dormant capacity.

Conclusion

From the above introduction, we have known that combo SFP port on SFP switch is a port type to carry out different connection applications. For combo SFP ports on Ethernet switch, only one of the twisted pair port or SFP slot can be used. For SFP ports on SFP switch, it can be either plugged into Ethernet copper cable with RJ45 SFP module, or optical fiber cable with fiber SFP module to achieve short and long reach distance transmission. What is more, FS S3800-24F4S is a good example of combo SFP ports on switch. If you have any need, FS would be a choice.

Related Article: Understanding SFP Ports on SFP Switch

0 kommentarer

How to Connect Ethernet Switch, Router and Modem

In the computer networking world, the three most ubiquitous pieces of equipment are Ethernet switch, router and modem. These are applied everywhere from data center to network connections in your own home. However, despite the importance of these three pieces of equipment, some people are oblivious or confused to their internal functions and connection mode. So in this article, we will attempt to explain the difference between each piece of equipment and introduce the common way to connect Ethernet switch, router and modem.

What Is the Difference Between Ethernet Switch, Router and Modem

From a physical perspective, a modem, router and Ethernet switch look very similar. Nevertheless, there are key differences between them internally and functionally with relevant purposes on a network.

  • Switch: Bridge Your Devices in a Network

An Ethernet switch is commonly referred to as a multi-port network bridge that processes and routes data on a data link layer (layer 2) and sometimes network layer (layer 3) of the OSI model. An Ethernet switch is an intelligent device which transmits data to specific MAC addresses within the LAN. It has the capability to learn and distinguish between specific addresses by accessing them from a CAM table.

Switch-Bridge Your Devices in a Network

  • Router: Connect You with the Internet

A router is the ”traffic director” of a network. It takes information provided by the modem or ONT and routes it to the various devices that are connected. Router uses protocols such as ICMP (Internet Control Message Protocol) to communicate with each other and configures the best route between any two hosts.

  • Modem: Connect Internet with ISP

A modem is the short way of saying “modulator, demodulator”, which is a hardware device that allows a computer to send and receive data over a telephone line or a cable or satellite connection. The main purpose of a modem when used in a home networking environment is to establish a connection between your home network and ISP.

Connection Between Ethernet Switch, Router and Modem

There are a handful of ways to set up a shareable home network connection, but the safest and most reliable way is to use a router and switch in combination. Once the switch is behind a router (which in most cases uses NAT), all devices connected to either the switch or the router can access the internet simultaneously. Placing the router between modem and Ethernet switch creates an extra layer of protection from threats on the Internet.

Here are the detailed steps for connection:

Step 1: Unplug the power supplies of cable modem, switch and wireless router. Unplug any Ethernet cables that are plugged into any of them.

Step2: Connect telephone wire with modem, and then connect an Ethernet cable to the Ethernet port on the back of the cable modem.

Step3: Plug the other end of Ethernet cable connected with modem into WAN port of router.

Step4: Connect another Ethernet cable to numbered Ethernet port on the switch and plug the other end into the LAN port on the wireless router.

Step5: Plug the power supplies of the modem, Ethernet switch and router in. After two minutes, the network and Internet connection is ready to go.

Connection Between Ethernet Switch, Router and Modem

Conclusion

As you read this, you may be clear about the knowledge of Ethernet switch, router and modem and the proper way to connect them in a network. For suitable Ethernet switch and gigabit switch of good quality, FS would be your great choice.

0 kommentarer

Fiber Optic Cable vs Wireless: Which One Would You Prefer

With the swift development of science and technology, the majority of people have access to the Internet. Our home and enterprise networks rely on either wired technology or wireless technology. Wireless communication technology is also regarded as a modern alternative to traditional wired networking. When both sides: fiber optic cable vs wireless are the opposites in a competition, which one will win the favor?

wired network vs wireless network

Fiber Optic Cable vs Wireless: What Is Fiber?

It is a method of transmitting information from one place to another by sending pulses of light through an optical fiber. It is delivered through thin glass pipes known as fiber optic cable with the usage of light waves. This technology is generally considered as the successor to DSL broadband which is delivered over copper telephone network.

Fiber Optic Cable vs Wireless: What Is Wireless?

Wireless network is a network set up by using radio signal frequency to communicate among computers and other network devices. Sometimes it is also referred to WiFi network or WLAN. This network is getting popular nowadays with the feature of easy setup and no cabling involvement. You can connect computers anywhere in your home without the need for wires.

Fiber Optic Cable vs Wireless: Which One Is Better?

We are going to compare fiber optic cable vs wireless from below 3 aspects:

comparison between wired and wireless network

  • Speed

Theoretically, the wireless network can transmit data at the same speed as fiber optical cable. Practically, fiber optical cable can achieve higher maximum speed. When network becomes congested, the more users at one time who surf the Internet and share the same bandwidth, the more crowded and slower the wireless network will become. A wired Ethernet connection can notionally offer up to 10Gb/s if you have a Cat6 Ethernet cable. The exact maximum speed of your Ethernet cable depends on the type of Ethernet cable you are using.

  • Distance

Furthermore, the signal strength of wireless can be weakened over long distance. Fiber optic wire can convey a clear signal much farther. Take single mode fiber of wired network as an example, it is applied for wide-range data applications and commonly used in carrier networks, PONs, and MANs. In general, wired network offers quicker speed and longer distance transmission without interference and is more reliable than WIFI as well.

  • Convenience of Installation

To install fiber network can be time consuming and quite complicated. Depending on the business environment and other variables, the process of installation of fiber network usually takes months. On the other hand, installing Microwave Fixed Wireless Internet only takes days and requires fewer resources.

Conclusion

Each coin has two sides. For fiber optic cable vs wireless, the network connection is no exception. Wired connection will provide more reliability and have less potential for interference. While wireless connection will offer greater flexibility and the ability to easily addition of devices to your network. It all depends on what you would like to do and how you want to use your connection. If you have any demands for products to set up a wired Internet, FS.COM would supply a variety of relevant fiber optic cables and other applications.

0 kommentarer